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1. Introduction

Consider the parabolic Anderson model,

∂tu(t , x) = 1
2∂

2
xu(t , x) + u(t , x)η(t , x), t > 0, x ∈ R, (1.1)

with delta initial condition u(0) = δ0, where η denotes space-time white noise on R+×R. 
Following Walsh [18], we interpret the stochastic PDE (1.1) in the following mild form:

u(t , x) = pt(x) +
∫

(0,t)×R

pt−s(x− y)u(s , y) η(dsdy), (1.2)

where

pt(x) = 1√
2πt

e−x2/(2t) for all t > 0 and x ∈ R.

Consider the following renormalization of the solution to (1.1):

U(t , x) := u(t , x)
pt(x) for all t > 0 and x ∈ R. (1.3)

It is not too hard to prove that limt↓0 U(t , x) = 1 in Lk(Ω) for all x ∈ R and k ≥ 2; see 
Lemma A.4 below. Therefore, we also define

U(0 , x) := 1 for all x ∈ R,

throughout.
Amir, Corwin, and Quastel [1, Proposition 1.4] have shown that the process U(t) :=

{U(t , x)}x∈R is stationary for every t > 0. The formulation (1.2) of the stochastic PDE 
(1.1) can be recast equivalently in terms of U as follows:

U(t , x) = 1 +
∫

(0,t)×R

pt−s(x− y)ps(y)
pt(x) U(s , y) η(dsdy).

Because1

pt−s(a)ps(b)
pt(a + b) = ps(t−s)/t

(
b− s

t
(a + b)

)
for all 0 < s < t and a, b ∈ R, (1.4)

equation (1.2) can be recast as the following random evolution equation for U :

1 In fact, both sides of (1.4) represent the probability density of Xs at b where X denotes a Brownian 
bridge that emenates from zero and is conditioned to reach a + b at time t.
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U(t , x) = 1 +
∫

(0,t)×R

U(s , y)ps(t−s)/t

(
y − s

t
x
)
η(dsdy). (1.5)

The purpose of this paper is to study asymptotic properties of the stationary process 
U(t), equivalently u(t)/pt. The main results are stated as the following three theorems.

Theorem 1.1. The process U(t) is weakly mixing, hence also ergodic, for every t > 0.

It follows immediately from (1.5) that E[U(t , x)] = 1. Therefore, Theorem 1.1 and 
the ergodic theorem together imply that for all t ≥ 0,

lim
N→∞

1
N

N∫
0

U(t , x) dx = 1 a.s. and in L1(Ω). (1.6)

In fact, Lemma 2.4 below implies that (1.6) holds in Lk(Ω) for every k ≥ 1.
The next two theorems describe the rate of convergence in the ergodic theorem (1.6). 

In order to state those theorems, let us introduce

SN,t := 1
N

N∫
0

[U(t , x) − 1] dx for all N > 0 and t ≥ 0. (1.7)

Then we have the following quantitative central limit theorem.

Theorem 1.2. For every t > 0 there exists a real number c = c(t) > 0 and N0 = N0(t) > e
such that for all N ≥ N0,

dTV

(
SN,t√

Var(SN,t)
, N(0 , 1)

)
≤ c

√
logN
N

, (1.8)

where dTV denotes the total variation distance, and N(μ , σ2) denotes the normal law 
with mean μ ∈ R and variance σ2 > 0.

Theorem 1.2 tacitly implies also that Var(SN,t) > 0 for all N large. As part of the 
proof of Theorem 1.2, we in fact prove in Proposition 4.1 below that

Var(SN,t) ∼
2t logN

N
as N → ∞. (1.9)

Therefore, Theorem 1.2 implies that, for all t > 0,√
N

logN SN,t
d−→ N(0 , 2t) as N → ∞. (1.10)
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where “ d−→” denotes convergence in distribution. Since the limiting variance 2t is a linear 
function of t, the above suggests the existence of a functional CLT with a Brownian 
limit. This is confirmed by the next result of this section.

Theorem 1.3. Choose and fix a real number T > 0. Then, as N → ∞,√
N

logN SN,•
C[0,T ]−−−−→

√
2B, (1.11)

where B denotes a standard one-dimensional Brownian motion, and “ C[0,T ]−−−−→” denotes 
weak convergence in the Banach space C[0 , T ] of all continuous, real-valued functions 
on [0 , T ], endowed with the uniform topology.

Theorem 1.2 indicates the convergence in total variation distance of the one-
dimensional laws. It seems conceivable that one can obtain the convergence in total 
variation distance of the finite-dimensional distributions. Moreover, one might wonder if 
the weak convergence to Brownian motion in Theorem 1.3 can be replaced by conver-
gence in total variation. We leave this question as an open problem for the interested 
readers.

Open problem: Does the process {
√
N/ logN SN,t}t∈[0,T ] converge to {

√
2Bt}t∈[0,T ]

in total variation, as N → ∞, for any T > 0?
Now let us compare our work with the existing ones to show the difficulties and hence 

the contributions of the current paper. First, regarding Theorem 1.1, in Chen et al.
[6], we used Poincaré-type inequalities and Malliavin calculus in order to establish the 
spatial ergodicity for a large class of parabolic stochastic PDEs that include the parabolic 
Anderson model with flat initial condition u(0) ≡ 1. Broadly speaking, the method in [6]
is also employed here in order to prove Theorem 1.1. However, because the initial profile 
of (1.1) is the singular measure δ0, novel technical issues arise. Chief among them is the 
fact that the Malliavin derivative of the solution to (1.1) behaves radically differently 
from the case with constant initial data. This can be seen by comparing our Lemma 2.1
with Theorem 6.4 of [6]. As a result, the Poincaré-type inequality [see (2.1)] yields a 
(logN/N)-decay rate, which is bigger than the 1/N -rate obtained in the flat case [6], 
and the asymptotic variance (1.9) is likewise different from the case of flat initial data. 
The Poincaré-type inequality (2.1) is based on the Clark-Ocone formula, and the latter 
plays an import role not only in this context, but in fact throughout the paper.

Secondly, for Theorem 1.2, such total variation estimates for spatial averages of solu-
tions to parabolic stochastic PDEs were introduced by Huang, Nualart, and Viitasaari 
[11] for the one-dimensional stochastic heat equation driven by a space-time white noise, 
and later extended in Huang, Nualart, Viitasaari, and Zheng [12] to the multidimensional 
stochastic heat equation driven by a noise whose spatially homogeneous covariance is a 
suitable Riesz kernel. The main ingredient in deriving such estimates is the Malliavin-
Stein approach (see Nourdin and Peccati [13,14]) which provides a convergence rate, in 
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total variation distance, using a combination of Malliavin calculus and Stein’s method 
for normal approximations. But unlike the case considered in Huang et al. [11] (see also 
Chen et al. [7]), where the initial condition was u(0) ≡ 1, in our setting the solution to 
(1.1) with delta initial condition is scaled by the heat kernel, and this produces asymp-
totic variance for spatial averages of order log(N)/N ; see (1.9). As a consequence, we 
need to normalize the average in (1.10) by the unconventional rate 

√
N/ logN . More-

over, the 
√

logN/N -rate of convergence of the total variation distance in Theorem 1.2 is 
a natural one, which is of the same order as 

√
Var(SN,t) as N → ∞ (see (1.9)). Such a 

relation also holds in the context of Malliavin-Stein approach to central limit theorems 
for other types of SPDEs; see [9,11,12,17]. Furthermore, the presence of these unexpected 
logarithmic factors is new in the literature, which shows the slow decorrelation of the 
random field U(t), and can be attributed to the singularity of the delta initial condition.

Lastly, the functional central limit theorem stated in Theorem 1.3 is the counterpart 
in our framework of Theorem 1.2 in [11]. The convergence in law of finite-dimensional 
distributions is obtained using the Malliavin-Stein approach as in the proof of Theorem 
1.2 in [11], but the proof of tightness, however, is more involved due to the singularity 
of the initial condition and requires computations which are different from those in [11]
(see the proof of Proposition 6.1).

In the following, after introducing some preliminaries in §2, we first prove Theorem 1.1
in §3. Then we establish asymptotic results for the covariance of SN,t in §4, which will 
be used in the proof of Theorems 1.2 and 1.3 in §5 and §6, respectively. Finally, some 
technical lemmas are proved in Appendix.

Let us close the Introduction with a brief description of the notation of this paper. 
For every Z ∈ Lk(Ω), we write ‖Z‖k instead of (E[|Z|k])1/k. Let Lip denote the class of 
all Lipschitz-continuous, real-valued functions on R, and define for all g : R → R,

Lip(g) := sup
−∞<a<b<∞

|g(b) − g(a)|
|b− a| .

Thus, g ∈ Lip if and only if Lip(g) < ∞. Recall that if g ∈ Lip, then Rademacher’s 
theorem (see Federer [10, Theorem 3.1.6]) ensures that g has a weak derivative whose 
essential supremum is Lip(g). Let g′ denote a given measurable version of that derivative. 
Throughout, we define

log+(x) := log(e + x) for every x ≥ 0.

We also use “̂” to denote the Fourier transform, normalized so that

f̂(x) =
∞∫

eixyf(y) dy for all x ∈ R and f ∈ L1(R).

−∞
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2. Preliminaries

2.1. Clark-Ocone formula

Let H = L2(R+×R). The Gaussian family {W (h)}h∈H formed by the Wiener integrals

W (h) =
∫

R+×R

h(s , x) η(dsdx)

defines an isonormal Gaussian process on the Hilbert space H. In this framework we 
can develop the Malliavin calculus (see Nualart [15]). We denote by D the derivative 
operator. Let {Fs}s≥0 denote the filtration generated by the space-time white noise η.

We recall the following Clark-Ocone formula (see Chen et al. [6, Proposition 6.3]):

F = E[F ] +
∫

R+×R

E [Ds,yF | Fs] η(dsdz) a.s.,

valid for every random variable F in the Gaussian Sobolev space D1,2. Thanks to Jensen’s 
inequality for conditional expectations, the above Clark-Ocone formula readily yields the 
following Poincaré-type inequality, which plays an important role throughout the paper:

|Cov(F ,G)| ≤
∞∫
0

ds
∞∫

−∞

dz ‖Ds,zF‖2 ‖Ds,zG‖2 for all F,G ∈ D1,2. (2.1)

2.2. Malliavin derivative of u(t , x)

According to Chen, Hu, and Nualart [4, Proposition 5.1] (see Chen and Huang [5, 
Proposition 3.2] for the higher-dimensional case),

u(t , x) ∈
⋂
k≥2

D1,k for all t > 0 and x ∈ R,

and the corresponding Malliavin derivative Du(t , x) satisfies the following stochastic 
integral equation: For s ∈ (0 , t),

Ds,yu(t , x) = pt−s(x− y)u(s , y) +
∫

(s,t)×R

pt−r(x− z)Ds,yu(r , z) η(dr dz) a.s.

We offer the following estimate on the Malliavin derivative of u(t , x).

Lemma 2.1. For every T > 0 and k ≥ 2, there exists a real number CT,k > 0 such that 
for t ∈ (0 , T ) and x ∈ R, and for almost every (s , y) ∈ (0 , t) ×R,
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‖Ds,yu(t , x)‖k ≤ CT,k pt−s(x− y)ps(y). (2.2)

Proof. The proof is similar to the proof of Theorem 6.4 of Chen et al. [6]. Fix t ∈ (0 , T )
and x ∈ R. Let u0(t , x) = pt(x) for every x ∈ R, and define iteratively, for every n ∈ Z+,

un+1(t , x) := pt(x) +
∫

(0,t)×R

pt−r(x− z)un(r , z) η(dr dz). (2.3)

Conus, Joseph, Khoshnevisan, and Shiu [8, Theorem 3.3] and Chen and Dalang [3, The-
orem 2.4] found independently, and at the same time, that there exists a real number 
cT,k > 0 such that for all (s , y) ∈ (0 , T ] ×R,

sup
n∈Z+

‖un(s , y)‖k ∨ ‖u(s , y)‖k ≤ cT,k ps(y). (2.4)

We apply the properties of the divergence operator [15, Prop. 1.3.8] in order to deduce 
from (2.3) that for almost every (s , y) ∈ (0 , t) ×R,

Ds,yun+1(t , x)

= pt−s(x− y)un(s , y) +
∫

(s,t)×R

pt−r(x− z)Ds,yun(r , z) η(dr dz) a.s. (2.5)

By (2.5), (2.4), and a suitable form of the Burkholder-Davis-Gundy inequality (BDG),

‖Ds,yun+1(t , x)‖2
k

≤ 2c2T,k p
2
t−s(x− y)p2

s(y) + 2ck
t∫

s

dr
∞∫

−∞

dz p2
t−r(x− z)‖Ds,yun(r , z)‖2

k, (2.6)

where ck = 4k; see [6, (5.6)]. Let Ck := (2c2T,k) ∨ (2ck). We can iterate (2.6) to find that

‖Ds,yun+1(t , x)‖2
k

≤ Ck p
2
t−s(x− y)p2

s(y) + C2
kp

2
s(y)

t∫
s

dr1
∞∫

−∞

dz1 p2
t−r1(x− z1)p2

r1−s(z1 − y)

+ · · · + Cn
k p

2
s(y)

t∫
s

dr1
∞∫

−∞

dz1

r1∫
s

dr2
∞∫

−∞

dz2 · · ·
rn−2∫
s

drn−1

∞∫
−∞

dzn−1 p2
t−r1(x− z1)

× p2
r1−r2(z1 − z2) × · · · × p2

rn−1−s(zn−1 − y)

+ Cn+1
k p2

s(y)
t∫
dr1

∞∫
dz1

r1∫
dr2

∞∫
dz2 · · ·

rn−1∫
drn

∞∫
dzn p2

t−r1(x− z1)

s −∞ s −∞ s −∞
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× p2
r1−r2(z1 − z2) × · · · × p2

rn−1−rn(zn−1 − zn)p2
rn−s(zn − y). (2.7)

In order to simplify the preceding expression, let us first use the elementary identity 
(1.4) in order to see that

∞∫
−∞

p2
t−s(x− y)p2

s−r(y − z) dy =

√
t− r

4π(t− s)(s− r) p
2
t−r(x− z).

Consequently,

t∫
s

dr1
∞∫

−∞

dz1

r1∫
s

dr2
∞∫

−∞

dz2 · · ·
rn−1∫
s

drn
∞∫

−∞

dzn

p2
t−r1(x− z1)p2

r1−r2(z1 − z2) × · · · × p2
rn−1−rn(zn−1 − zn)p2

rn−s(zn − y)

= (4π)−n/2 p2
t−r(x− y)

×
t∫

s

dr1

r1∫
s

dr2 · · ·
rn−1∫
s

drn

√
t− s

(t− r1)(r1 − r2) · · · (rn−1 − rn)(rn − s)

=
(
t− s

4π

)n/2

p2
t−r(x− y)

∫
0<rn<···<r1<1

dr1 · · ·drn√
(1 − r1)(r1 − r2) · · · rn

=
(
t− s

4π

)n/2 Γ(1/2)n

Γ(n/2) p2
t−s(x− y). (2.8)

Together, (2.7) and (2.7)’ yield

‖Ds,yun+1(t , x)‖2
k ≤ p2

t−s(x− y)p2
s(y)

n∑
j=0

Cj+1
k

(
t− s

4π

)j/2 Γ(1/2)j

Γ(j/2)

≤ p2
t−s(x− y)p2

s(y)
∞∑
j=0

Cj+1
k T j/2

(4π)j/2
Γ(1/2)j

Γ(j/2) .

Since the above series is convergent, we can conclude that there exists c′T,k > 0 such that 
for almost every (s , y) ∈ (0 , t) ×R,

sup
n≥0

‖Ds,yun(t , x)‖k ≤ c′T,k pt−s(x− y)ps(y). (2.9)

Moreover, (1.4) and (2.9) together yield
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sup
n≥0

E
(
‖Dun(t , x)‖2

H
)
≤ (c′T,2)2

t∫
0

ds
∞∫

−∞

dy p2
t−s(x− y)p2

s(y)

= (c′T,k)2p2
t (x)

t∫
0

ds
∞∫

−∞

dy p2
s(t−s)/t

(
y − s

t
x
)

= (c′T,k)2p2
t (x)

t∫
0

√
t

4πs(t− s) ds < ∞,

(2.10)

where we have used the semigroup property of the heat kernel in the final identity. It fol-
lows from (2.10) and the closability properties of the Malliavin derivative that there exists 
a subsequence n(1) < n(2) < · · · of positive integers such that Dun(�)(t , x) converges 
to Du(t , x) in the weak topology of L2(Ω ; H). Then, we use a smooth approximation 
{ψε}ε>0 to the identity in R+ ×R, and apply Fatou’s lemma and duality for Lk-spaces, 
in order to find that for almost every (s , y) ∈ (0 , t) ×R and for all k ≥ 2,

‖Ds,yu(t , x)‖k ≤ lim inf
ε→0

∥∥∥∥∥∥
∞∫
0

ds′
∞∫

−∞

dy′ Ds′,y′u(t , x)ψε(s− s′, y − y′)

∥∥∥∥∥∥
k

≤ lim inf
ε→0

sup
‖G‖k/(k−1)≤1

∣∣∣∣∣∣
∞∫
0

ds′
∞∫

−∞

dy′ E [GDs′,y′u(t , x)]ψε(s− s′, y − y′)

∣∣∣∣∣∣ .
Choose and fix a random variable G ∈ L2(Ω) such that ‖G‖k/(k−1) ≤ 1. Because 
Dun(�)(t , x) converges weakly in L2(Ω ; H) to Du(t , x) as � → ∞, we can write

∣∣∣∣∣∣
∞∫
0

ds′
∞∫

−∞

dy′ E [GDs′,y′u(t , x)]ψε(s− s′, y − y′)

∣∣∣∣∣∣
= lim

�→∞

∣∣∣∣∣∣
∞∫
0

ds′
∞∫

−∞

dy′ E
[
GDs′,y′un(�)(t , x)

]
ψε(s− s′, y − y′)

∣∣∣∣∣∣
≤ lim sup

�→∞

∞∫
0

ds′
∞∫

−∞

dy′
∥∥Ds′,y′un(�)(t , x)

∥∥
k
ψε(s− s′, y − y′)

≤ c′T,k

∞∫
0

ds′
∞∫

−∞

dy′ 1(0,t)(s′)pt−s′(x− y′)ps′(y′)ψε(s− s′, y − y′).

Let ε → 0 to conclude the proof of (2.2). �
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2.3. The Malliavin-Stein method

Recall that if X and Y are random variables with respective probability distributions 
μ and ν on R, then the total variation distance between X and Y is defined as

dTV(X ,Y ) = sup
B∈B(R)

|μ(B) − ν(B)|,

where B(R) denotes the family of all Borel subsets of R. The same sort of definition 
continues to hold when X and Y are abstract random variables on a topological space 
X, except B(R) is replaced by B(X).

We abuse notation and let dTV(F , N(0 , 1)) denote the total variation distance between 
the law of F and the N(0 , 1) law. The following bound on dTV(F , N(0 , 1)) follows from a 
suitable combination of ideas from the Malliavin calculus and Stein’s method for normal 
approximations; see Nualart and Nualart [16, Theorem 8.2.1].

Proposition 2.2. Suppose that F ∈ D1,2 satisfies E(F 2) = 1 and F = δ(v) for some v in 
the L2(Ω)-domain of the divergence operator δ. Then,

dTV(F ,N(0 , 1)) ≤ 2
√

Var (〈DF , v〉H).

In the proof of Theorem 1.11 we will make use of the following generalization of a 
result of Nourdin and Peccati [14, Theorem 6.1.2].

Proposition 2.3. Let F = (F (1), . . . , F (m)) be a random vector such that, for every 
i = 1, . . . , m, F (i) = δ(v(i)) for some v(i) ∈ Dom [δ]. Assume additionally that F (i) ∈ D1,2

for i = 1, . . . , m. Let G be a centered m-dimensional Gaussian random vector with co-
variance matrix (Ci,j)1≤i,j≤m. Then, for every h ∈ C2(Rm) that has bounded second 
partial derivatives,

|E(h(F )) − E(h(G))| ≤ 1
2‖h

′′‖∞

√√√√ m∑
i,j=1

E
(∣∣Ci,j − 〈DF (i) , v(j)〉H

∣∣2),
where

‖h′′‖∞ := max
1≤i,j≤m

sup
x∈Rm

∣∣∣∣ ∂2h(x)
∂xi∂xj

∣∣∣∣ .
2.4. On the ergodic theorem (1.6)

Recall the definition (1.7) of SN,t and observe that the ergodic theorem (1.6) can be 
recast in terms of the average integral SN,t as follows:

lim SN,t = 0 a.s. and in L1(Ω).

N→∞
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The following lemma proves that the ergodic theorem (1.6) holds in Lk(Ω) for every 
k ≥ 2, hence also in Lk(Ω) for every k ≥ 1. It also yields a quantitative upper bound 
of O(

√
log(N)/N) on the rate of convergence in Lk(Ω) for every k ≥ 1, with a constant 

that describes also the behavior of the limit uniformly in t when t � 1. Perhaps not 
surprisingly, the mentioned rate of convergence coincides with the rate of convergence 
to normality that was ensured by Theorem 1.2.

Lemma 2.4. For all real numbers k ≥ 2 and T > 0 there exists a number Ak,T > 0 such 
that

sup
N≥e

∥∥∥∥∥
√

N

logN SN,t

∥∥∥∥∥
k

≤ Ak,T

√
t log+(1/t) uniformly for all t ∈ (0 , T ),

where log+(w) := log(e + w) for all w ≥ 0.

Proof. Choose and fix a real number k ≥ 2. By the BDG inequality and (1.4),

‖SN,t‖2
k = 1

N2

∥∥∥∥∥∥∥
∫

(0,t)×R

U(s , y)

⎡⎣ N∫
0

ps(t−s)/t

(
y − s

t
x
)

dx

⎤⎦ η(dsdy)

∥∥∥∥∥∥∥
2

k

≤ ck
N2

t∫
0

ds
∞∫

−∞

dy ‖U(s , y)‖2
k

⎡⎣ N∫
0

ps(t−s)/t

(
y − s

t
x
)

dx

⎤⎦2

,

uniformly for all N, t > 0. Apply (2.4) to see that

‖SN,t‖2
k ≤

ck c2T,k

N2

t∫
0

ds
∞∫

−∞

dy

⎡⎣ N∫
0

ps(t−s)/t

(
y − s

t
x
)

dx

⎤⎦2

,

uniformly for all N > 0 and t ∈ (0 , T ). Now expand the square and appeal to the 
semigroup property of the heat kernel in order to find that, for every N, t > 0,

∞∫
−∞

dy

⎡⎣ N∫
0

ps(t−s)/t

(
y − s

t
x
)

dx

⎤⎦2

=
N∫

0

dy
N∫

0

dz p2s(t−s)/t

(s
t
(y − z)

)

=
(
t

s

)2 Ns/t∫
0

da
Ns/t∫
0

db p2s(t−s)/t(a− b)

= Nt

πs

∞∫
−∞

(
1 − cos z

z2

)
exp
(
− t(t− s)z2

N2s

)
dz;
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see Lemma A.2 of the Appendix. Consequently, if N > 0 and t ∈ (0 , T ), then

‖SN,t‖2
k ≤

tckc
2
k,T

πN

∞∫
−∞

dx
(

1 − cosx
x2

) t∫
0

ds
s

exp
(
− t(t− s)x2

N2s

)

=
ckc

2
k,T logN
πN

∞∫
−∞

(
1 − cosx

x2

)
GN,t(x) dx,

where GN,t is defined in (A.1) below, in the Appendix. We may appeal to Lemma A.1
of the Appendix to conclude the result. �
3. Proof of Theorem 1.1

Since weak mixing implies ergodicity, it suffices to prove that U(t) is weakly mixing 
for every t > 0. We follow the proof of [6, Corollary 9.1] in order to reduce the proof of 
Theorem 1.1 to the verification of the following:

lim
|x|→∞

Cov [G(x) ,G(0)] = 0, (3.1)

where the functions g1, . . . , gk ∈ C1
b (R) satisfy gj(0) = 0 and Lip(gj) = 1 for every 

j = 1, . . . , k,

G(x) :=
k∏

j=1
gj(U(t , x + ζj)) for all x ∈ R,

and ζ1, . . . , ζk are fixed real numbers. Thus, it suffices to prove (3.1).
By the chain rule for the Malliavin derivative [15, Proposition 1.2.4],

Ds,zG(x) =
k∑

j0=1

⎛⎜⎜⎝ k∏
j=1
j 
=j0

gj
(
U(t , x + ζj)

)⎞⎟⎟⎠ g′j0
(
U(t , x + ζj0)

)
Ds,zU(t , x + ζj0).

Therefore, the definition of the process U in (1.3), (2.4), and Lemma 2.1 together imply 
the existence of a real number c = c(T, k) such that

‖Ds,zG(x)‖2 ≤
k∑

j0=1

⎛⎝ k∏
j=1,j 
=j0

‖gj(U(t , x + ζj))‖2k

⎞⎠ ‖Ds,zU(t , x + ζj0)‖2k

≤ c

k∑
j=1

pt−s(x + ζj − z)ps(z)
pt(x + ζj) = c

k∑
j=1

ps(t−s)/t

(
z − s

t
(x + ζj)

)
,
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uniformly for all 0 < s < t ≤ T and x, z ∈ R; the equality holds due to (1.4). Now apply 
the Poincaré inequality (2.1) and the semigroup property of the heat kernel to see that

|Cov [G(x) ,G(0)]| ≤ c2
k∑

j,�=1

t∫
0

p2s(t−s)/t

(s
t
(x + ζj − ζ�)

)
ds.

This implies (3.1), thanks to the dominated convergence theorem, and concludes the 
proof. �
4. Asymptotic behavior of the covariance

Recall from (1.7) that

SN,t = 1
N

N∫
0

[U(t , x) − 1] dx,

where U(t , x) was defined in (1.3). The following proposition provides the asymptotic 
behavior of the covariance function of the renormalized sequence of processes SN,t as N
tends to infinity.

Proposition 4.1. For every t1, t2 > 0,

lim
N→∞

Cov
[√

N

logN SN,t1 ,

√
N

logN SN,t2

]
= 2(t1 ∧ t2).

Proof. First, let us recall from Chen and Dalang [3, (2.31)] that, for all s > 0 and z ∈ R,

E
(
|u(s , z)|2

)
= p2

s(z)(1 + θ(s)), (4.1)

where

θ(s) := es/4
√

s/2

√
s/2∫

−∞

e−y2/2 dy for all s > 0. (4.2)

By (1.2), the Itô-Walsh isometry, and (4.1),

Cov [U(t1 , x) , U(t2 , y)]

= 1
pt1(x)pt2(y)

t1∧t2∫
ds

∞∫
dz pt1−s(x− z)pt2−s(y − z)E

(
|u(s , z)|2

)

0 −∞
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= 1
pt1(x)pt2(y)

t1∧t2∫
0

ds
∞∫

−∞

dz pt1−s(x− z)pt2−s(y − z)p2
s(z)(1 + θ(s))

=
t1∧t2∫
0

ds
∞∫

−∞

dz ps(t1−s)/t1

(
z − s

t1
x

)
ps(t2−s)/t2

(
z − s

t2
y

)
(1 + θ(s))

=
t1∧t2∫
0

ps[(t1−s)/t1+(t2−s)/t2]

(
s

[
x

t1
− y

t2

])
(1 + θ(s)) ds

=:
t1∧t2∫
0

Ps,t1,t2(x, y)(1 + θ(s)) ds,

notation being clear from context. Let τ := 2t1t2/(t1 + t2), so that we can write

Ps,t1,t2(x , y) = Ps,τ

(
2(xt2 − yt1)

t1 + t2

)
for Ps,t(w) = p2s(t−s)/t

(sw
t

)
.

If t1 < t2, then

Cov
[√

N

logN SN,t1 ,

√
N

logN SN,t2

]
= 1

N logN

N∫
0

dy
N∫

0

dx Cov [U(t1 , x) , U(t2 , y)]

= 1
N logN

t1∫
0

ds (1 + θ(s))
N∫

0

dy
N∫

0

dx Ps,τ

(
2(xt2 − yt1)

t1 + t2

)
.

In order to simplify the exposition define

τ1 := 2t2
t1 + t2

and τ2 = 2t1
t1 + t2

.

We then change variables [x → x/τ1 and y → y/τ2] to obtain

Cov
[√

N

logN SN,t1 ,

√
N

logN SN,t2

]

= 1
τ1τ2N logN

t1∫
0

(1 + θ(s)) ds
Nτ1∫
0

dx
Nτ2∫
0

dy Ps,τ (x− y)

= τ

τ1τ2N logN

t1∫
0

(
1 + θ(s)

s

)
ds

Nτ1∫
0

dx
Nτ2∫
0

dy p2τ(τ−s)/s(x− y),
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where in the last equality we have used the scaling property,

pσ(αw) = α−1pσ/α2(w), valid for all σ, α > 0 and w ∈ R. (4.3)

Since 1̂[0,a](ξ) = a1̂[0,1](aξ) for all a > 0 and ξ ∈ R, Parseval’s identity ensures that

Cov
[√

N

logN SN,t1 ,

√
N

logN SN,t2

]

= τ

2πτ1τ2 logN

t1∫
0

(
1 + θ(s)

s

)
ds

∞∫
−∞

1̂[0,τ1](w)1̂[0,τ2](w) exp
(
− (τ − s)τ

s

w2

N2

)
dw

= 1
2πτ1τ2

∞∫
−∞

1̂[0,τ1](w)1̂[0,τ2](w)GN,τ (w) dw

− τ

2πτ1τ2 logN

τ∫
t1

ds
s

∞∫
−∞

1̂[0,τ1](w)1̂[0,τ2](w) exp
(
− (τ − s)τ

s

w2

N2

)
dw

+ τ

2πτ1τ2 logN

t1∫
0

θ(s)
s

ds
∞∫

−∞

1̂[0,τ1](w)1̂[0,τ2](w) exp
(
− (τ − s)τ

s

w2

N2

)
dw

=: A(1)
N −A

(2)
N + A

(3)
N ,

where the function GN,τ is defined in (A.1) below, in the Appendix. We plan to prove 
that

lim
N→∞

A
(1)
N = 2t1 and lim

N→∞
A

(2)
N = lim

N→∞
A

(3)
N = 0. (4.4)

These facts together conclude the proof of the proposition.
In order to understand the behavior of A(1)

N we first apply Lemma A.1 and the dom-
inated convergence theorem, and then the Parseval identity, in order to verify the first 
of the three assertions in (4.4):

lim
N→∞

A
(1)
N = 2τ

2πτ1τ2

∞∫
−∞

1̂[0,τ1](w)1̂[0,τ2](w) dw = 2τ
τ1τ2

〈
1[0,τ1] , 1[0,τ2]

〉
L2(R) = 2t1.

We study A(2)
N by making a change of variables [s → τ/(s + 1)] to find that

A
(2)
N = τ

2πτ1τ1 logN

(t2−t1)/(t2+t1)∫
0

ds
1 + s

∞∫
−∞

1̂[0,τ1](w)1̂[0,τ2](w) exp
(
−τsw2

N2

)
dw.
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Since exp(−τsw2/N2) ≤ 1, this proves that A(2)
N = O(1/ logN) → 0 as N → ∞. 

Therefore, it remains to prove the third assertion in (4.4) about A(3)
N . For that, we 

change variables [s → τs] to obtain

∣∣∣A(3)
N

∣∣∣ ≤ τ

2πτ1τ2 logN

∞∫
−∞

∣∣∣1̂[0,τ1](w)1̂[0,τ2](w)
∣∣∣ dw 1∫

0

θ(τs)
s

exp
(
− (1 − s)τ

s

w2

N2

)
ds

= τ

2πτ1τ2 logN

∞∫
−∞

∣∣∣1̂[0,τ1](w)1̂[0,τ2](w)
∣∣∣ dw ∞∫

0

θ(τ/(r + 1))
r + 1 exp

(
−w2τr

N2

)
dr.

By the definition of the function θ in (4.2),

θ

(
τ

r + 1

)
exp
(
−w2τr

N2

)
< θ

(
τ

r + 1

)
≤ eτ/4

√
τπ

r + 1 for all r > 0.

Hence,

∣∣∣A(3)
N

∣∣∣ ≤ eτ/4t
√
τπ

2πτ1τ2 logN

∞∫
−∞

∣∣∣1̂[0,τ1](w)1̂[0,τ2](w)
∣∣∣ dw ×

∞∫
0

dr
(r + 1)3/2

→ 0,

as N → ∞. This concludes the proof of (4.4) and hence the proof of the proposition. �
5. Proof of Theorem 1.2

For all N, t, s > 0 and y ∈ R define

gN,t(s , y) := 1(0,t)(s)
1
N

N∫
0

ps(t−s)/t

(
y − s

t
x
)

dx and vN,t(s , y) := gN,t(s , y)U(s , y).

(5.1)
Because of (1.7) and a stochastic Fubini argument,

SN,t =
∫

R+×R

vN,t(s , y) η(dsdy) = δ(vN,t) a.s., (5.2)

owing to the fact that vN,t is an adapted random field and hence its stochastic integral 
agrees with its divergence (see Nualart [15, Chapter 1.3.3]). Our work so far shows that 
SN,t is Malliavin differentiable, and that the following defines a version of the Malliavin 
derivative of SN,t:

Dr,zSN,t = 1(0,t)(r)vN,t(r , z) + 1(0,t)(r)
∫

Dr,zvN,t(s , y) η(dsdy). (5.3)

(r,t)×R
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The key technical result of this section is the following proposition:

Proposition 5.1. For every T > 0 there exists a real number KT > 0 such that

sup
t,τ∈(0,T )

Var 〈DSN,t , vN,τ 〉H ≤ KT
(logN)3

N3 for all N ≥ e.

We plan to first prove Proposition 5.1. Then, we will use this proposition to prove The-
orem 1.2. The key to the proof of Proposition 5.1 is the following simple decomposition, 
which is an immediate consequence of (5.3):

〈DSN,t , vN,τ 〉H = XN,t,τ + YN,t,τ , (5.4)

where

XN,t,τ := 〈vN,t , vN,τ 〉H , and

YN,t,τ :=
∞∫
0

dr
∞∫

−∞

dz vN,τ (r , z)

⎛⎜⎝ ∫
(r,t)×R

Dr,zvN,t(s , y) η(dsdy)

⎞⎟⎠ .
(5.5)

The decomposition (5.4) ensures that

Var〈DSN,t , vN,τ 〉H ≤ 2Var(XN,t,τ ) + 2Var(YN,t,τ ). (5.6)

Therefore, the bulk of the work is to establish bounds on the last two variances. Those 
require some effort and are carried out separately, using slightly different ideas, in Lem-
mas 5.3 and 5.4 respectively. In light of those lemmas and (5.6), the proof Proposition 5.1
is immediate, with no need for additional proof.

First let us observe that the mean of 〈DSN,t , vN,τ 〉H is carried by XN,t,τ .

Lemma 5.2. For every T, N > 0 and t, τ ∈ (0 , T ),

EYN,t,τ = 0 and E 〈DSN,t , vN,τ 〉H = EXN,t,τ = Cov (SN,t , SN,τ ) .

Proof. Thanks to Gaussian integration by parts (see Nualart [15, (1.42)]), E(〈DF , V 〉H)=
E[Fδ(V )] for all F ∈ D1,2 and V ∈ Dom[δ]. Choose F ≡ 1 to observe the well-known 
fact that δ(V ) has mean zero, and choose F = δ(U) to see that E(〈Dδ(U) , V 〉H) =
Cov(δ(U) , δ(V )) whenever U, V ∈ Dom[δ]. Thanks to (5.2) we can apply the preceding 
with U = vN,t and V = vN,τ to see that SN,t = δ(U) and SN,τ = δ(V ) [from (5.2)], 
whence E〈DSN,t , vN,τ 〉H = Cov(SN,t , SN,τ ). Since the Walsh integral has mean zero and 
U is adapted, EYN,t,τ = 0; see (5.5). This and (5.4) together complete the proof. �



18 L. Chen et al. / Journal of Functional Analysis 282 (2022) 109290
Lemma 5.3. For every T > 0 there exists a real number AT > 0 such that

sup
t,τ∈(0,T )

Var(XN,t,τ ) ≤ AT
(logN)3

N3 uniformly for every N ≥ e.

Proof. Choose and fix 0 < t, τ < T and N ≥ e. It follows readily from (5.5) and our 
efforts thus far that XN,t,τ is Malliavin differentiable, and the following is a version of 
the Malliavin derivative:

Dr,zXN,t,τ = 21[0,t∧τ ](r)
t∧τ∫
r

ds
∞∫

−∞

dy gN,t(s , y)gN,τ (s , y)U(s , y)Dr,zU(s , y).

Moreover, it follows from this and the definition of the H-norm that

‖DXN,t,τ‖2
H = 4

t∧τ∫
0

dr
∞∫

−∞

dz

∣∣∣∣∣∣
t∧τ∫
r

ds
∞∫

−∞

dy gN,t(s , y)gN,τ (s , y)U(s , y)Dr,zU(s , y)

∣∣∣∣∣∣
2

.

According to (1.3), (2.4), and Lemma 2.1, whenever 0 < s, s′ < T and y, y′ ∈ R, the 
following holds a.s. for a.e. every (r , z) ∈ (s ∧ s′, t) ×R:

|E [U(s , y)Dr,zU(s , y)U(s′, y′)Dr,zU(s′, y′)]|

≤ c24,T ‖Dr,zU(s , y)‖4 ‖Dr,zU(s′, y′)‖4

≤ c2T,4C
2
T,4

ps−r(y − z)pr(z)
ps(y)

ps′−r(y′ − z)pr(z)
ps′(y′)

=: 1
4AT pr(s−r)/s

(
z − r

s
y
)
pr(s′−r)/s′

(
z − r

s′
y′
)
,

where we have appealed to (1.4) in the last line. Therefore,

E
(
‖DXN,t,τ‖2

H
)

≤ AT

t∧τ∫
0

dr
∞∫

−∞

dz
t∧τ∫
r

ds
∞∫

−∞

dy
t∧τ∫
r

ds′
∞∫

−∞

dy′

× gN,t(s , y)gN,τ (s , y)gN,t(s′, y′)gN,τ (s′, y′)pr(s−r)/s

(
z − r

s
y
)
pr(s′−r)/s′

(
z − r

s′
y′
)

= AT

t∧τ∫
0

dr
t∧τ∫
r

ds
∞∫

−∞

dy
t∧τ∫
r

ds′
∞∫

−∞

dy′

× gN,t(s , y)gN,τ (s , y)gN,t(s′, y′)gN,τ (s′, y′)p[r(s−r)/s]+[r(s′−r)/s′]

(r
y − r

′ y
′
)
,

s s
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thanks to the semigroup property of the heat kernel. Since gN,ν(s, y) ≤ ν
sN

−1 for all 
N > 0, ν ≥ s > 0 and y ∈ R, we may bound two of the g-terms from above, each by 
N−1, in order to find that

E
(
‖DXN,t,τ‖2

H
)
≤ AT

N2

t∧τ∫
0

dr
t∧τ∫
r

t ∨ τ

s
ds

∞∫
−∞

dy
t∧τ∫
r

t ∨ τ

s′
ds′

∞∫
−∞

dy′

× gN,t∧τ (s , y)gN,t∧τ (s′, y′)p[r(s−r)/s]+[r(s′−r)/s′]

(r
s
y − r

s′
y′
)

= AT

N4

t∧τ∫
0

dr
t∧τ∫
r

t ∨ τ

s
ds

∞∫
−∞

dy
t∧τ∫
r

t ∨ τ

s′
ds′

∞∫
−∞

dy′
N∫

0

dx
N∫

0

dx′

× ps({t∧τ}−s)/(t∧τ)

(
y − s

t ∧ τ
x
)
ps′({t∧τ}−s′)/(t∧τ)

(
y′ − s′

t ∧ τ
x′
)

× p[r(s−r)/s]+[r(s′−r)/s′]

(r
s
y − r

s′
y′
)
.

It follows from (4.3) that

p[r(s−r)/s]+[r(s′−r)/s′]

(r
s
y − r

s′
y′
)

= s

r
p[s(s−r)/r]+[s2(s′−r)/(s′r)]

(
y − s

s′
y′
)
.

Therefore, the semigroup property of the heat kernel implies the following:

E
(
‖DXN,t,τ‖2

H
)
≤ AT (t ∨ τ)2

N4

t∧τ∫
0

dr
r

t∧τ∫
r

ds
t∧τ∫
r

ds′

s′

∞∫
−∞

dy′
N∫

0

dx
N∫

0

dx′

ps′({t∧τ}−s′)/(t∧τ)

(
y′ − s′

t ∧ τ
x′
)

× p[s(s−r)/r]+[s2(s′−r)/(s′r)]+[s({t∧τ}−s)/(t∧τ)]

( s

s′
y′ − s

t ∧ τ
x
)
.

A repeated appeal to (4.3) yields

p[s(s−r)/r]+[s2(s′−r)/(s′r)]+[s({t∧τ}−s)/(t∧τ)]

( s

s′
y′ − s

t ∧ τ
x
)

= s′

s
p[(s′)2(s−r)/(sr)]+[s′(s′−r)/r]+[(s′)2({t∧τ}−s)/{s(t∧τ)}]

(
y′ − s′

t ∧ τ
x

)
.

And yet another appeal to the semigroup property reveals the following:

E
(
‖DXN,t,τ‖2

H
)

≤ AT (t ∨ τ)2

N4

t∧τ∫ dr
r

t∧τ∫ ds
s

t∧τ∫
ds′

N∫
dx

N∫
dx′
0 r r 0 0
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× p[(s′)2(s−r)/(sr)]+[s′(s′−r)/r]+[(s′)2({t∧τ}−s)/{s(t∧τ)}]+[s′({t∧τ}−s′)/(t∧τ)]

(
s′

t ∧ τ
(x− x′)

)

= AT (t ∨ τ)2(t ∧ τ)
N4

t∧τ∫
0

ds
s

t∧τ∫
0

ds′

s′

s∧s′∫
0

dr
r

N∫
0

dx
N∫

0

dx′

× p[(t∧τ)2(s−r)/(sr)]+[(t∧τ)2(s′−r)/(s′r)]+[(t∧τ)({t∧τ}−s)/s]+[(t∧τ)({t∧τ}−s′)/s′](x− x′),

thanks also to scaling (4.3) and Fubini’s theorem. Since

2(t ∧ τ)(t ∧ τ − r)
r

= (t ∧ τ)2(s− r)
sr

+ (t ∧ τ)2(s′ − r)
s′r

+ (t ∧ τ)(t ∧ τ − s)
s

+ (t ∧ τ)(t ∧ τ − s′)
s′

,

we appeal to Lemma A.2 in order to find that

E
(
‖DXN,t,τ‖2

H
)

≤ AT (t ∨ τ)2(t ∧ τ)
N3π

t∧τ∫
0

ds
s

t∧τ∫
0

ds′

s′

s∧s′∫
0

dr
r

∞∫
−∞

dz ϕ(z)e−((t∧τ)((t∧τ)−r))z2/(rN2).

Integrating in the variables s and s′ yields

E
(
‖DXN,t,τ‖2

H
)
≤ AT (t ∨ τ)2(t ∧ τ)

N3π

t∧τ∫
0

dr
r

(
log
(
t ∧ τ

r

))2 ∫
R

e−
(t∧τ)((t∧τ)−r)

r
z2
N2 ϕ(z)dz,

Making the change of variables (t∧τ)−r
r = θ, allows us to write

E
(
‖DXN,t,τ‖2

H
)
≤ AT (t ∨ τ)2(t ∧ τ)

N3π

∫
R

ϕ(z)dz
∞∫
0

dθ 1
θ + 1 (log(θ + 1))2 e−

(t∧τ)θz2

N2 .

Integrating by parts and using the fact that

(
1
3(log(θ + 1))3e−

(t∧τ)θz2

N2

)θ=∞

θ=0
= 0,

we obtain

E
(
‖DXN,t,τ‖2

H
)
≤ AT (t ∨ τ)2(t ∧ τ)

3N3π

∫
R

ϕ(z)dz
∞∫
0

dθ (log(θ + 1))3 e−
tθz2
N2

(t ∧ τ)z2

N2

= AT (t ∨ τ)2(t ∧ τ)
3N3π

∫
R

ϕ(z)dz
∞∫
0

dθ
(

log
(

N2

(t ∧ τ)z2 θ + 1
))3

e−θ.
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Using the inequality

log
(

N2

(t ∧ τ)z2 θ + 1
)

≤ 2 logN + log(θ + 1) + log
(

1
t ∧ τ

+ 1
)

+ log
(

1
z2 + 1

)
≤
(

2 logN + log
(

1
t ∧ τ

+ 1
))(

1 + log(θ + 1) + log
(

1
z2 + 1

))
,

and taking into account that

C :=
∫
R

ϕ(z)dz
∞∫
0

dθ
(

1 + log(θ + 1) + log
(

1
z2 + 1

))3
e−θ < ∞,

we finally get

E
(
‖DXN,t,τ‖2

H
)
≤ CAT (t ∨ τ)2(t ∧ τ)

3N3π

(
2 logN + log

(
1

t ∧ τ
+ 1
))3

,

which provides the desired estimate. �
Lemma 5.4. For every T > 0 there exists a real number A′

T > 0 such that

sup
t,τ∈(0,T )

Var (YN,t,τ ) ≤ A′
T

(logN)3

N3 uniformly for every N ≥ e.

Proof. Lemma 5.2 ensures that YN,t,τ has mean zero, and hence

Var (YN,t,τ ) = E
t∫

0

dr
∞∫

−∞

dz
τ∫

0

dr′
∞∫

−∞

dz′

⎛⎜⎝ ∫
(r,t)×R

vN,t(r , z)Dr,zvN,t(s , y) η(dsdy)

⎞⎟⎠

×

⎛⎜⎝ ∫
(r′,τ)×R

vN,τ (r′, z′)Dr′,z′vN,τ (s , y) η(dsdy)

⎞⎟⎠,

which, by Fubini’s theorem, is

=
t∧τ∫
0

dr
∞∫

−∞

dz
t∧τ∫
0

dr′
∞∫

−∞

dz′
t∧τ∫

r∨r′

ds
∞∫

−∞

dy gN,t(r , z)gN,τ (r′, z′)gN,t(s , y)gN,τ (s , y)

×E [U(r , z) ·Dr,zU(s, y) · U(r′ , z′) ·Dr′,z′U(s , y)].

Combine (1.3) and (2.4) with Lemma 2.1 in order to see that
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|E [U(r , z) ·Dr,zU(s , y) · U(r′ , z′) ·Dr′,z′U(s , y)]|
≤ c2T,4‖Dr,zU(s , y)‖4‖Dr′,z′U(s , y)‖4

≤ c2T,4C
2
T,4

ps−r(y − z)pr(z)
ps(y)

ps−r′(y − z′)pr′(z′)
ps(y)

=: LT pr(s−r)/s

(
z − r

s
y
)
pr′(s−r′)/s

(
z′ − r′

s
y

)
.

Plug this into the preceding identity for Var(YN,t,τ ) in order to see that

Var(YN,t,τ ) ≤ LT

t∧τ∫
0

dr
∞∫

−∞

dz
t∧τ∫
0

dr′
∞∫

−∞

dz′
t∧τ∫

r∨r′

ds
∞∫

−∞

dy

× gN,t(r , z)gN,τ (r′, z′)gN,t(s , y)gN,τ (s , y)pr(s−r)/s

(
z − r

s
y
)
pr′(s−r′)/s

(
z′ − r′

s
y

)
.

We can apply first (5.1), and then the semigroup property of the heat kernel, in order 
to see that

∞∫
−∞

gN,t(r , z)pr(s−r)/s

(
z − r

s
y
)

dz

= 1
N

N∫
0

dx
∞∫

−∞

dz pr(s−r)/s

(
z − r

s
y
)
pr(t−r)/t

(
z − r

t
x
)

= 1
N

N∫
0

p[r(s−r)/s]+[r(t−r)/t]

(r
s
y − r

t
x
)

dx.

Therefore,

Var(YN,t,τ ) ≤
LT

N2

t∧τ∫
0

dr
t∧τ∫
0

dr′
t∧τ∫

r∨r′

ds
∞∫

−∞

dy
N∫

0

dx
N∫

0

dx′ gN,t(s , y)gN,τ (s , y)

× p[r(s−r)/s]+[r(t−r)/t]

(r
s
y − r

t
x
)
p[r′(s−r′)/s]+[r′(τ−r′)/τ ]

(
r′

s
y − r′

τ
x′
)
.

Since gN,ν(s, y) ≤ ν
sN

−1 for all N > 0, ν ≥ s > 0 and y ∈ R,

Var(YN,t,τ ) ≤
tτLT

N4

t∧τ∫
0

dr
t∧τ∫
0

dr′
t∧τ∫

r∨r′

ds
s2

∞∫
−∞

dy
N∫

0

dx
N∫

0

dx′

× p[r(s−r)/s]+[r(t−r)/t]

(r
s
y − r

t
x
)
p[r′(s−r′)/s]+[r′(τ−r′)/τ ]

(
r′

s
y − r′

τ
x′
)
.
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Now we use scaling [see (4.3)] to see that

p[r(s−r)/s]+[r(t−r)/t]

(r
s
y − r

t
x
)

= s

r
p[s(s−r)/r]+[s2(t−s)/(rt)]

(
y − s

t
x
)
,

with an analogous expression holding for the version with the variables with the primes. 
This endeavor, and the semigroup property of the heat kernel, together yield

Var(YN,t,τ ) ≤
tτLT

N4

t∧τ∫
0

dr
r

t∧τ∫
0

dr′

r′

t∧τ∫
r∨r′

ds
N∫

0

dx
N∫

0

dx′ p
Γ+Γ′

(s
t
x− s

τ
x′
)
,

with Γ and Γ′ being the following functions whose variable-dependencies are excised for 
ease of exposition:

Γ := s(s− r)
r

+ s2(t− s)
rt

, Γ′ := s(s− r′)
r′

+ s2(τ − s)
r′τ

.

A change of variables [a = sx/t, a′ = sx′/τ ] yields

Var(YN,t,τ ) ≤
(tτ)2LT

N4

t∧τ∫
0

dr
r

t∧τ∫
0

dr′

r′

t∧τ∫
r∨r′

ds s−2

Ns/t∫
0

da
Ns/τ∫
0

da′ p
Γ+Γ′ (a− a′)

≤ (tτ)2LT

N4

t∧τ∫
0

dr
r

t∧τ∫
0

dr′

r′

t∧τ∫
r∨r′

ds s−2

Ns/(t∧τ)∫
0

da
Ns/(t∧τ)∫

0

da′ p
Γ+Γ′ (a− a′)

= (tτ)2LT

π(t ∧ τ)N3

t∧τ∫
0

ds
s

s∫
0

dr
r

s∫
0

dr′

r′

∞∫
−∞

dz ϕ(z)e−(Γ+Γ′)z2(t∧τ)2/(2N2s2),

where ϕ is defined in (6.5) below, and we have used Lemma A.2 in the equality. Since

(Γ + Γ′)(t ∧ τ)2/s2 ≥ (t ∧ τ)2
(
s(s− r)

sr
+ s(s− r′)

sr′

)
+ 2(t ∧ τ)((t ∧ τ) − s),

we obtain

Var(YN,t,τ )

≤ (tτ)2LT

π(t ∧ τ)N3

∞∫
−∞

dz ϕ(z)
t∧τ∫
0

ds
s

⎛⎝ s∫
0

dr
r

e−((t∧τ)((t∧τ)−s)+(t∧τ)2s(s−r)/(sr))z2/(2N2)

⎞⎠2

= (tτ)2LT

π(t ∧ τ)N3

∞∫
−∞

dz ϕ(z)
t∧τ∫
0

dr
r

⎛⎝ r∫
0

ds
s

e−((t∧τ)((t∧τ)−r)+(t∧τ)2r(r−s)/(sr))z2/(2N2)

⎞⎠2

,
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where we simply switch s and r in the equality.
Making the change of variables (r − s)/s = θ, yields

r∫
0

ds
s

e−
[(t∧τ)((t∧τ)−s)/s+(t∧τ)2(r−s)/(rs)]z2

2N2 =
∞∫
0

1
1 + θ

e−
(t∧τ)z2

2N2 (2θ(t∧τ+(t∧τ)−r)/r)dθ.

As a consequence,

Var(YN,t,τ )

≤ (tτ)2LT

π(t ∧ τ)N3

∞∫
−∞

dz ϕ(z)
t∧τ∫
0

1
r
e−

z2
N2 (t∧τ)((t∧τ)−r)/r

⎛⎝ ∞∫
0

1
1 + θ

e−
(t∧τ)2z2θ

rN2 dθ

⎞⎠2

dzdr

With the further change of variable (t∧τ)−r
r = ξ, we obtain

Var(YN,t,τ )

≤ (tτ)2LT

π(t ∧ τ)N3

∞∫
−∞

dz ϕ(z)
∞∫
0

1
1 + ξ

e−
(t∧τ)z2ξ

N2

⎛⎝ ∞∫
0

1
1 + θ

e−
(t∧τ)(ξ+1)z2θ

N2 dθ

⎞⎠2

dzdξ

≤ (tτ)2LT

π(t ∧ τ)N3

∞∫
−∞

dz ϕ(z)

⎛⎝ ∞∫
0

1
1 + θ

e−
(t∧τ)z2θ

N2 dθ

⎞⎠3

dz

= (tτ)2LT

π(t ∧ τ)N3

∞∫
−∞

dz ϕ(z)

⎛⎝ ∞∫
0

1
θ + (t∧τ)z2

N2

e−θdθ

⎞⎠3

dz.

We have

∞∫
0

1
θ + (t∧τ)z2

N2

e−θdθ ≤
∞∫
1

e−θdθ +
1∫

0

1
θ + (t∧τ)z2

N2

dθ = e−1 + log
(

1 + N2

(t ∧ τ)z2

)
≤ e−1 + 2 logN + log(1 + 1/(t ∧ τ)) + log(1 + z−2)

Taking into account that ∫
R

ϕ(z)(1 + log(1 + z−2))3dz < ∞,

we obtain the desired estimate and complete the proof. �
We now conclude this section with the following.
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Proof of Theorem 1.2. From Proposition (5.1) [with t = τ ], we see that for all T > 0
there exists a number KT > 0 such that

Var 〈DSN,t , vN,t〉H ≤ KT
(logN)3

N3 for all t ∈ (0 , T ) and N ≥ e.

By (5.2) and Proposition 2.2,

dTV

(
SN,t√

Var(SN,t)
, Z

)

≤ 2

√√√√Var
〈

DSN,t√
Var(SN,t)

,
vN,t√

Var(SN,t)

〉
H

≤ 2
√

KT
(logN)3/2

N3/2Var(SN,t)
uniformly for all t ∈ (0 , T ) and N ≥ e.

Proposition 4.1 ensures that Var(SN,t) ∼ 2t log(N)/N as N → ∞, which concludes the 
proof. �
6. Proof of Theorem 1.3

In order to prove Theorem 1.3 we need to establish the weak convergence of the 
finite-dimensional distributions, as well as tightness. The following addresses tightness.

Proposition 6.1 (Tightness). For every T > 0, k ≥ 2, and γ ∈ (0 , 1/6), there exists a 
number L = L(T, k , γ) > 0 such that for all ε ∈ (0 , 1],

sup
0<t≤T

E
(
|SN,t+ε − SN,t|k

)
≤ Lεγk

(
logN
N

)k/2

uniformly for all N ≥ e.

The proof of Proposition 6.1 hinges on the following lemma, which is a useful inequality 
when t stays away from zero.

Lemma 6.2. For every T > 0, k ≥ 2 and δ > 0, there exists a number K = K(T, k, δ) > 0
such that

E
(
|SN,t+ε − SN,t|k

)
≤ Kεk/2

(t ∧ 1)k(1+δ)/2

(
logN
N

)k/2

,

uniformly for all N ≥ e, t ∈ (0 , T ], and ε ∈ (0, 1).
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Proof. Thanks to (1.5) and (1.7), we may write the following: For all N, t > 0,

SN,t+ε − SN,t = 1
N

N∫
0

[U(t + ε , x) − U(t , x)] dx

=
∫

(0,t)×R

U(s , y)A(s , y) η(dsdy) +
∫

(t,t+ε)×R

U(s , y)B(s , y) η(dsdy),

almost surely, where

A(s , y) := 1
N

N∫
0

[
ps(t+ε−s)/(t+ε)

(
y − sx

t + ε

)
− ps(t−s)/t

(
y − sx

t

)]
dx, and

B(s , y) := 1
N

N∫
0

ps(t+ε−s)/(t+ε)

(
y − sx

t + ε

)
dx,

and the dependence on the parameters N and ε are subsumed for ease of notation. Thus,

‖SN,t+ε − SN,t‖k ≤ TA + TB, (6.1)

where

TA :=

∥∥∥∥∥∥∥
∫

(0,t)×R

U(s , y)A(s , y) η(dsdy)

∥∥∥∥∥∥∥
k

and

TB :=

∥∥∥∥∥∥∥
∫

(t,t+ε)×R

U(s , y)B(s , y) η(dsdy)

∥∥∥∥∥∥∥
k

.

We will estimate TA and TB separately and in reverse order.
To estimate TB we appeal to the BDG inequality (with BDG constant ck) as follows:

T 2
B ≤ ck

t+ε∫
t

ds
∞∫

−∞

dy ‖U(s , y)‖2
k|B(s , y)|2 ≤ ckc

2
k,T

t+ε∫
t

ds
∞∫

−∞

dy |B(s , y)|2

=
ckc

2
k,T

N2

t+ε∫
t

ds
∞∫

−∞

dy
N∫

0

dx1

N∫
0

dx2 ps(t+ε−s)/(t+ε)

(
y − sx1

t + ε

)

× ps(t+ε−s)/(t+ε)

(
y − sx2

t + ε

)
,
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where we used (2.4) to deduce the second inequality. Rearrange the integrals and compute 
the dy-integral first to see from the semigroup property of the heat kernel that

T 2
B ≤

ckc
2
k,T

N2

t+ε∫
t

ds
N∫

0

dx1

N∫
0

dx2 p2s(t+ε−s)/(t+ε)

(
s(x1 − x2)

t + ε

)

=
ckc

2
k,T (t + ε)2

N2

t+ε∫
t

ds
s2

sN/(t+ε)∫
0

dx1

sN/(t+ε)∫
0

dx2

× p2s(t+ε−s)/(t+ε)(x1 − x2),

after a change of variables. Since the dx2-integral is bounded above by one, it follows 
that

T 2
B ≤

ckc
2
k,T (t + ε)
N

t+ε∫
t

ds
s

<
ckc

2
k,T (t + ε)
Nt

ε. (6.2)

The estimation of TA is more involved, though it starts in the same way as did the 
process of bounding TB. Namely, we write, using the BDG inequality,

T 2
A ≤ ck

t∫
0

ds
∞∫

−∞

dy ‖U(s , y)‖2
k|A(s , y)|2

≤ ckc
2
k,T

t∫
0

ds
∞∫

−∞

dy |A(s , y)|2[by (2.4)]

=
ckc

2
k,T

2π

t∫
0

ds
∞∫

−∞

dξ
∣∣∣Â(s)(ξ)

∣∣∣2 =
tckc

2
k,T

2πN

t∫
0

ds
s

∞∫
−∞

dξ
∣∣∣Â(s)(tξ/(Ns))

∣∣∣2 ,
(6.3)

owing to Plancherel’s theorem and a change of variables. The correct change of variables 
is slightly tricky to find. But once we have it set up, as we have done above, we note 
that

Â(s)(tξ/(Ns)) = 1
N

N∫
0

[
exp
(
i

txξ

N(t + ε) − t2(t + ε− s)ξ2

2s(t + ε)N2

)
− exp

(
i
xξ

N
− t(t− s)ξ2

2sN2

)]
dx

=
1∫

0

[
exp
(
i
tyξ

t + ε
− t2(t + ε− s)ξ2

2s(t + ε)N2

)
− exp

(
iyξ − t(t− s)ξ2

2sN2

)]
dy

= J1 + J2,
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where

J1 :=
1∫

0

eityξ/(t+ε) dy ×
[
exp
(
− t2(t + ε− s)ξ2

2s(t + ε)N2

)
− exp

(
− t(t− s)ξ2

2sN2

)]
, and

J2 :=
1∫

0

[
exp
(
i
tyξ

t + ε

)
− exp(iyξ)

]
dy × exp

(
− t(t− s)ξ2

2sN2

)
.

Since (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we see from (6.3) that

T 2
A ≤

2tckc2k,T
2πN

t∫
0

ds
s

∞∫
−∞

dξ |J1|2 +
2tckc2k,T

2πN

t∫
0

ds
s

∞∫
−∞

dξ |J2|2. (6.4)

Define,

ϕ(z) := 1 − cos z
z2 for all z ∈ R \ {0}, (6.5)

and ϕ(0) = 1/2 to preserve continuity. It is then easy to see that

|J1| =

√
2ϕ
(

tξ

t + ε

) ∣∣∣∣exp
(
− t2(t + ε− s)ξ2

2s(t + ε)N2

)
− exp

(
− t(t− s)ξ2

2sN2

)∣∣∣∣
=

√
2ϕ
(

tξ

t + ε

)
exp
(
− t(t− s)ξ2

2sN2

) ∣∣∣∣1 − exp
(
− εtξ2

2(t + ε)N2

)∣∣∣∣
Therefore,

t∫
0

ds
s

∞∫
−∞

dξ |J1|2

≤ 2
t∫

0

ds
s

∞∫
−∞

dξ ϕ

(
tξ

t + ε

)
exp
(
− t(t− s)ξ2

sN2

) ∣∣∣∣1 − exp
(
− εtξ2

2(t + ε)N2

)∣∣∣∣2

≤ C

t∫
0

ds
s

∞∫
−∞

dξ 1
ξ2 exp

(
− t(t− s)ξ2

sN2

) ∣∣∣∣1 − exp
(
− εtξ2

2(t + ε)N2

)∣∣∣∣2

≤ C

N

∞∫
1

dr
r

∞∫
−∞

dz 1
z2 exp

(
−t(r − 1)z2) ∣∣∣∣1 − exp

(
− εtz2

2(t + ε)

)∣∣∣∣2

≤ C

N

∞∫ dr
r

∞∫
dz 1

z2 exp
(
−t(r − 1)z2) εtz2

2(t + ε)

1 −∞
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≤ Cε

2N

∞∫
1

dr
r

∞∫
−∞

dz exp
(
−t(r − 1)z2)

= Cε

N

∞∫
1

1
r
√

t(r − 1)
dr

= Cε

N
√
t
, (6.6)

where in the third step we have changed the variables z = ξ/N and r = t/s, in the fourth 
step we have applied the inequality (1 − e−x2)2 ≤ 1 − e−x2 ≤ x2, and the constant C is 
a generic constant that may change values at each appearance.

Next, we estimate the same quantity but where J1 is replaced by J2. A few lines of 
computation show that

1∫
0

[
exp
(
i
tyξ

t + ε

)
− exp(iyξ)

]
dy = eiξ

iξ

[
exp
(
−iεξ

t + ε

)
− 1
]

+ ε

itξ

[
exp
(

itξ

t + ε

)
− 1
]
,

provided that ξ �= 0. Because (a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R,∣∣∣∣∣∣
1∫

0

[
exp
(
i
tyξ

t + ε

)
− exp(iyξ)

]
dy

∣∣∣∣∣∣
2

≤ 4
ξ2

[
1 − cos

(
εξ

t + ε

)]
+ 4ε2

t2ξ2

[
1 − cos

(
tξ

t + ε

)]

≤ 2
ξ2

(
εξ

t + ε

)2

+ 2ε2

t2ξ2

(
tξ

t + ε

)2

<
4ε2

t2 + ε2 ,

since 1 − cos θ ≤ 1
2θ

2 for all θ ∈ R. Alternatively, we could have used the tautological 
bound, 1 − cos θ ≤ 2 in order to deduce∣∣∣∣∣∣

1∫
0

[
exp
(
i
tyξ

t + ε

)
− exp(iyξ)

]
dy

∣∣∣∣∣∣
2

≤ 8
ξ2 + 8ε2

t2ξ2 ≤ 8
ξ2

(
t2 + ε2

t2

)
.

Combine the preceding two bounds in order to see that∣∣∣∣∣∣
1∫

0

[
exp
(
i
tyξ

t + ε

)
− exp(iyξ)

]
dy

∣∣∣∣∣∣
2

≤ 8
{(

ε2

t2 + ε2

)
∧
(
t2 + ε2

t2ξ2

)}
.

Consequently,

t∫ ds
s

∞∫
dξ |J2|2 ≤ 8

t∫ ds
s

∞∫
dξ exp

(
− t(t− s)ξ2

sN2

)[(
ε2

t2 + ε2

)
∧
(
t2 + ε2

t2ξ2

)]

0 −∞ 0 −∞
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= 8 logN
t

∞∫
−∞

GN,t(ξ)
[(

ε2

t2 + ε2

)
∧
(
t2 + ε2

t2ξ2

)]
dξ,

where GN,t is defined in (A.1) in the Appendix. Lemma A.1 of the Appendix now tells 
us that

t∫
0

ds
s

∞∫
−∞

dξ |J2|2

≤ 56 log(N) log+(1/t)
∞∫

−∞

[(
ε2

t2 + ε2

)
∧
(
t2 + ε2

t2ξ2

)]
log+(1/|ξ|) dξ

= 56 log(N) log+(1/t)
(
t2 + ε2

t2

) ∞∫
−∞

[(
ε2t2

(t2 + ε2)2

)
∧ 1

ξ2

]
log+(1/|ξ|) dξ

<
560 log(N) log+(1/t)ε

t
;

(6.7)

see Lemma A.3 in the Appendix. Combine (6.4) with (6.6) and (6.7) in order to find 
that

T 2
A ≤ aT,k,δ

logN
N

ε

t1+δ
,

where aT,k,δ is a real number depends only on (T, k, δ). We combine this bound with 
(6.2) and then (6.1) to conclude the proof. �

We are now ready for the following.

Proof of Proposition 6.1. We assume without incurring loss in generality that T > 1/e. 
Choose and fix two arbitrary numbers α ∈ (0 , 1) and β ∈ (0 , 1). On one hand, Lemma 6.2
implies that, uniformly for all ε ∈ (0 , 1/e), N ≥ e, and t ∈ (εβ , T ],

‖SN,t+ε − SN,t‖k ≤ Mε(1−2β(1+δ))/2
√

logN
N

, (6.8)

with M := K1/k. [The condition T > 1/e is there merely to ensure that (εβ, T ] �= ∅]. 
On the other hand, Lemma 2.4 implies the existence of a real number M ′ = M ′(T, k , α)
such that, uniformly for all N ≥ e and t ∈ (0 , εβ ],

‖SN,t+ε − SN,t‖k ≤ ‖SN,t+ε‖k + ‖SN,t‖k ≤ M ′εβα/2
√

logN
N

. (6.9)

Choose β = (2 + α + 2δ)−1 to match the exponents of ε in (6.8) and (6.9) and hence 
conclude the asserted inequality of the proposition with L := M ∨M ′ and γ := α/{2(2 +
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α+2δ)}. To finish the proof we note that γ can be any number in (0 , 1/6) since α ∈ (0 , 1)
and δ > 0 are arbitrary. �

Armed with Proposition 6.1, we conclude the section with the following.

Proof of Theorem 1.3. Choose and fix some T > 0. By Lemma 2.4 and Proposition 6.1, 
a standard application of Kolmogorov’s continuity theorem and the Arzelà-Ascoli the-
orem ensures that {

√
N/ log(N)SN,•}N≥e is a tight net of processes on C[0 , T ]. 

Therefore, it remains to prove that the finite-dimensional distributions of the process 
t �→

√
N/ logN SN,t converge to those of 

√
2B; see for example Billingsley [2].

Let us choose and fix some T > 0 and m ≥ 1 points t1, . . . , tm ∈ (0 , T ). Proposition 4.1
ensures that, for every i, j = 1, . . . , m,

Cov
(
SN,ti ,SN,tj

)
∼ 2(ti ∧ tj)

logN
N

as N → ∞. (6.10)

Therefore, there exists N0 > 0 such that

Var(SN,ti) ≥ ti
logN
N

for every i = 1, . . . ,m and N > N0. (6.11)

Choose and fix an arbitrary N > N0, and consider the following random variables:

Fi := SN,ti√
Var(SN,ti)

for i = 1, . . . ,m,

and define Ci,j := Cov(Fi , Fj) for every i, j = 1, . . . , m. We will write F := (F1 , . . . , Fm), 
and let G = (G1 , . . . , Gm) denote a centered Gaussian random vector with covariance 
matrix C = (Ci,j)1≤i,j≤m.

Recall from (5.1) the random fields vN,t1 , . . . , vN,tm , and define rescaled random fields 
V1, . . . , Vm as follows:

Vi := vN,ti√
Var(SN,ti)

for i = 1, . . . ,m.

According to (5.2), Fi = δ(Vi) for all i = 1, . . . , m. Lemma 5.2 ensures that 
E〈DFi , Vj〉H = Ci,j for all i, j = 1, . . . , m. Therefore, Lemma 2.3 ensures that

|Eh(F ) − Eh(G)| ≤ 1
2‖h

′′‖∞

√√√√ m∑
i,j=1

Var〈DFi , Vj〉H,

for all h ∈ C2
b (Rm). Proposition 5.1 and (6.11) together assure us that

Var〈DFi , Vj〉H =
Var〈DSN,ti , vN,tj 〉H ≤ KT logN

.
Var(SN,ti)Var(SN,tj ) N min1≤k≤m tk
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whence

|Eh(F ) − Eh(G)| ≤ c‖h′′‖∞
√

logN/
√
N, (6.12)

for c = 1
2
√

KT /min1≤k≤m tk.
Now we let N → ∞: Thanks to (6.10), Ci,j → (ti ∧ tj)/

√
titj whence G converges 

weakly to (Bti/
√
ti)1≤i≤m as N → ∞. Therefore, it follows from (6.12) that F converges 

weakly to (Bti/
√
ti)1≤i≤m as N → ∞. One more appeal to (6.10) shows that

√
N

logN

(
SN,t1√

2t1
, . . . ,

SN,tm√
2tm

)
d−→
(
Bt1√
t1

, . . . ,
Btm√
tm

)
as N → ∞.

It follows from this fact that the finite-dimensional distributions of t �→
√
N/ logN SN,t

converge to those of 
√

2B as N → ∞. This verifies the remaining goal of this proof. �
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Appendix A

We include in this section a few technical results that have been used along the paper. 
In order to describe the first result, define

GN,t(x) := t

logN

t∫
0

exp
(
− (t− s)t

s
· x2

N2

)
ds
s

for all N, t > 0 and x ∈ R \ {0}. (A.1)

Lemma A.1. For every t > 0 and x ∈ R \ {0},

sup
N≥e

GN,t(x) ≤ 7t log+(1/t) log+(1/|x|),

where we recall that log+(w) := log(e + w) for all w ≥ 0. Moreover,

lim
N→∞

GN,t(x) = 2t for every t > 0 and x ∈ R. (A.2)
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Proof. We change variables in order to see that

GN,t(x) = t

logN

∞∫
0

e−s

s + tx2

N2

ds = t

logN (AN −BN + CN ),

where

AN :=
1∫

0

ds
s + tx2

N2

= log
(
N2

tx2 + 1
)
, BN :=

1∫
0

1 − e−s

s + tx2

N2

ds, CN :=
∞∫
1

e−s

s + tx2

N2

ds.

This proves (A.2) because BN , CN ∈ (0 , 1). Next, we observe that

N2

tx2 + 1 ≤ N2 (e + t−1) (e + |x|−2) ,
whence

AN ≤ 2 logN + log+(1/t) + 2 log+(1/|x|) ≤ 5 log(N) log+(1/t) log+(1/|x|),

for all N ≥ e, t > 0, and all non-zero x. This does the job since BN + CN ≤ 2, which is 
manifestly less than or equal to 2 log+(1/t) log+(1/|x|). �

The following lemma provides a useful heat-kernel formula.

Lemma A.2. For all N, t > 0, we have

N∫
0

dx1

N∫
0

dx2 pt(x1 − x2) = N

π

∞∫
−∞

ϕ(z)e−tz2/(2N2) dz,

where ϕ(z) was defined in (6.5).

Proof. Plancherel’s theorem implies that

N∫
0

dx1

N∫
0

dx2 pt(x1 − x2) = 1
2π

∞∫
−∞

|1̂[0,N ](y)|2e−ty2/2 dy

= N2

2π

∞∫
−∞

|1̂[0,1](Ny)|2e−ty2/2 dy.

A change of variables [z = Ny] implies the lemma, since |1̂[0,1](z)|2 = 2ϕ(z) for all 
z ∈ R. �
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Finally, we mention the following simple inequality.

Lemma A.3. For every ε ∈ (0 , 1),

∞∫
−∞

(
ε ∧ 1

z2

)
log+(1/|z|) dz < 10

√
ε.

Proof. Let J(ε) denote the integral in question. Because ε < 1 and log(2e) ≤ 2,

J(ε) = 4
∞∫

1/e

(
ε ∧ 1

z2

)
dz + 2ε

1/e∫
0

log(1/z) dz < 4ε
∞∫

1/e

(
1 ∧ 1

εz2

)
dz + 2ε,

since z �→ log(1/z) defines a probability density function on (0 , 1) and 0 < ε < 1. Change 
variables to see that

J(ε) < 4
√
ε

∞∫
√
ε/e

(
1 ∧ 1

r2

)
dr + 2ε = 8

√
ε + 2

(
1 − 2

e

)
ε,

which readily implies the result since ε <
√
ε. �

Lemma A.4. Let cT,k be the constant defined in (2.4) and set CT := π1/42−1/2 cT,2. Then,

sup
x∈R

‖U(t , x) − 1‖2 ≤ CT t
1/4 for all t ∈ (0 , T ].

Proof. Owing to (1.5), E[U(t , x)] = 1 for all t ∈ (0 , T ] and x ∈ R, and

Var[U(t , x)] =
t∫

0

ds
∞∫

−∞

dy
∣∣∣ps(t−s)/t

(
y − s

t
x
)∣∣∣2 E

(
|U(s , y)|2

)

≤ c2T,2

t∫
0

ds
∞∫

−∞

dy
∣∣∣ps(t−s)/t

(
y − s

t
x
)∣∣∣2 [see (1.3) and (2.4)]

= c2T,2

t∫
0

p2s(t−s)/t(0)ds = c2T,2
√
πt/4,

thanks to the semigroup property of the heat kernel and a few computations. This 
completes the proof. �
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